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The salient features for the over-all thermally ini­
tiated CF3CN-C2H4 reaction, at low values for the 
reactant ratio C2H4: CF3CN, appear well-understood 
in the light of free-radical telomerization kinetics in 
which the CF3- radical is dominant in the chain-
initiation step. These investigations are being ex­
tended to olefins and nitriles of related structures to 
gain a further insight on the reaction energetics; 
the question of using these processes with suitably 
selected experimental conditions, for the measurement 

of CF3- radical affinities in the gas phase at moderately 
high temperatures, is also being explored as part of 
this work. 
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Isotopic methanes are separated chromatographically by using a charcoal column (—3.5 to 150°). Retention 
times progressively decrease with increasing D or T substitutions. This decrease is consistent with the expected 
decrease in polarizabilities with increasing D or T substitutions. 

Introduction 

Isotopic molecules often exhibit markedly different 
retention times in gas-solid adsorption chromatog­
raphy.1-2 This fact is utilized in the present paper 
to develop a chromatographic technique for analyzing 
mixtures of deuterated and tritiated methanes. 

Experimental 
The four D isomers were obtained from Merck Sharp and 

Dohme Co., Ltd., Montreal, Canada. A mixture containing 
four T isomers was prepared by allowing 0.016 mole of CH4 to 
stand for 2 months in the presence of 4.4 c. of T2, which initiated 
tritiation by undergoing /3-decay.3 A chromatograph of the 
resulting mixture gave four peaks. These were identified by 
assuming that the peak sequence is the same as that observed 
with D isomers where CD4, CD3H, CD2H2, and CDH3 come off 
the column in this order. The identification was further checked 
in two ways. First, CH3T was prepared by mercury-sensitized 
photolysis of a CH4-T2 mixture. This photolysis was reported4 

to give predominantly monosubstituted methane, and the re­
tention time of the principal peak coincided with that of a peak 
identified as CH3T. A mixture of T isomers in which CT4 was 
the major component (mass spectrometry) was prepared as 
follows. T2 purchased from the Oak Ridge National Labora­
tories was found to contain small amounts of highly tritiated 
methane. This mixture was sparked with a Tesla coil and passed 
through a molecular sieve trap ( — 160°), which retained thf 
methane but not tritium.6 The methane recovered by subse­
quently warming the molecular sieve column gave a single peak 
whose retention time coincided with that of a peak originally 
identified at CT4. 

A 1520-cm. stainless steel column (0.152-cm. i.d.) was prepared 
by joining two 760-cm. columns which contained 0.0082 g./cm. 
of 80-100 mesh, high-activity charcoal purchased from Burrell 
Corp., Pittsburgh, Pa. Two such columns were prepared. One 
column was used for the experiments at —3.5 and 24°, while the 
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(e) E. Glueckauf, Endeavour, 20, 42 (1961); (f) J. W. Root, E. K. Lee, and 
F. S. Rowland, Science, 143, 676 (1964). 
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(b) R. J. Cvetanovic. F. J. Duncan, and W. E. Falconer, Can. J. Chem., 41, 
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other was used above 50°. Helium was used as a carrier gas, 
and the flow rate measured at the outlet was kept constant at 
56.6 cc./min. regardless of column temperature. 

To maintain the helium flow rate of 56.6 cc./min., it was 
necessary to employ high inlet pressures of above 10 atm. Sample 
injections at these pressures were accomplished with a gas-
sampling valve, equipped with a Viton A O-ring, purchased from 
Wilkens Instrument and Research, Inc., Walnut Creek, Calif. 

Experiments were performed using these mixtures: binary 
mixtures with 3:2 mole ratio of the components CH4-CD4 , 
CH4CHD3 , CH4-CH2D2 , and CH 3D-CD 4 ; a mixture of CH4 

with the four D isomers, each component having the same con­
centration; 4.4 c. of the four T isomers diluted in 0.016 mole of 
CH4; and 0.5 mc. of C14H4 diluted in 0.016 mole of CH4. In 
most experiments, sample size for a single injection was 1.3 
moles of the mixture. A thermal conductivity cell was used for 
CH4 and D isomer detections, while a 3-cc. ion chamber was 
employed for C14H4 and T isomer detections. Signals from both 
detectors were registered on a Brown dual-pen potentiometric 
recorder. 

Results and Discussion 
Figure 1 gives a chromatogram containing peaks of 

C14H4, CH4, and CH2D2. The retention times of 

TABLE I 

T H E RATIO, t(CHt)/t(ISOTOPES), OF RETENTION TIMES 

USING A CHARCOAL COLUMN 

1 t(cn 

Isomers 

C H 4
0 

C H 1 D 

C H 2 D 2 

C H D , 

C D 4 

C H 1 T 

C H 2 T 2 

C H T , 

C T 4 

H 4 ) = 78.0 a n d 180.3 

R E T E N T I O N T I M E S 

P-, ((CH4), 

24° 

1 .000 

1 .015 

1.029 
1.042 

1.061 

1.013 

1.030 

1 .048 

1 .068 

min . a t 24 

T A B L E I I 

AT DlFFEREN' 

a n d 

-3 .5° 

1 .000 

1.016 
1.033 

1.051 

1 .068 

1.017 

1.031 

1.053 

1 .078 

— 3.5° , respect i 

T T E M P E R A T U R E S 

Temp., 
°C. 

50 

75 
100 

125 

150 

((CH4), 
min. 

4 1 . 6 3 

2 6 . 7 0 

1 9 . 3 0 

1 4 . 4 0 
1 1 . 2 5 

/(CH,)/I(CD.) 

1.049 
1.041 

1 .035 

1.027 
1.014 

((CH.) /((CT V) 

1 .065 
1.052 

1.043 

1.030 
1.014 
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Fig. 1. 
T I M E 

-Chromatograms of CH4, CH2D: 

75.8 78 
MINUTES—9 

and C14H4 at 24° 

167 

T I M E - MINUTES 

Fig. 2.—Chromatograms of mixtures containing CH4 and four 
D or T isomers at —3.5°. 

C14H4 and CH4 are the same, but tha t of CH2D2 is 
shorter. This clearly indicates tha t the isotope effect 
is not due to the difference in total mass. Figure 2 
indicates tha t both D and T isomers give four dis­
tinguishable peaks at —3.5°. At 24°, only T isomers 
give four distinguishable peaks. This necessitated 
the use of different pairs of D isomers, as shown in 
Fig. 3. Table I summarizes relative retention times 
measured at peak maximum. Replacing H by either 

O 74 78 

TIME - M I N U T E S — » • 

Fig. 3.'—Chromatograms of some CH4-D isomer pairs at 24°. 

D or T results in a progressive decrease in retention 
times. To determine the possible dependence of the 
relative retention times on sample size, sample pres­
sures in a 0.55-cc. loop at 24° were varied from 25 to 
250 mm. Although this resulted in a 5 % decrease in 
the retention time, th of CH4, the ratio /!/2(CD4) 
stayed constant with an average deviation of less than 
0.2%. 

Table II summarizes the retention times of CH4, 
CD4 , and CT4 between 50 and 150°. As temperature 
increases, the isotope effect decreases steadily. At 
150°, CD 4 and CT4 no longer show distinguishable 
peaks; but even at this high temperature, CH4 sepa­
rates from the other two. 

Static adsorption data6 indicate tha t the C H 4 -
charcoal has a deeper minimum than the CD4-char-
coal interaction. This is at t r ibuted to the fact tha t 
D substitution reduces the polarizability of methane.6 

Progressive decrease in retention times following D 
or T substitution, as observed in the present experi­
ment, is explainable on the basis of this reduction in 
polarizabilities. 
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